Simple Graph Density Inequalities with No Sum of Squares Proofs
نویسندگان
چکیده
منابع مشابه
Sum of Squares Programs and Polynomial Inequalities
How can one find real solutions (x1, x2)? How to prove that they do not exist? And if the solution set is nonempty, how to optimize a polynomial function over this set? Until a few years ago, the default answer to these and similar questions would have been that the possi ble nonconvexity of the feasible set and/or objective function precludes any kind of analytic global results. Even today, t...
متن کاملOn the Bit Complexity of Sum-of-Squares Proofs
It has often been claimed in recent papers that one can find a degree d Sum-of-Squares proof if one exists via the Ellipsoid algorithm. In [16], Ryan O’Donnell notes this widely quoted claim is not necessarily true. He presents an example of a polynomial system with bounded coefficients that admits low-degree proofs of non-negativity, but these proofs necessarily involve numbers with an exponen...
متن کاملSum-of-squares proofs and the quest toward optimal algorithms
In order to obtain the best-known guarantees, algorithms are traditionally tailored to the particular problem we want to solve. Two recent developments, the Unique Games Conjecture (UGC) and the Sum-of-Squares (SOS) method, surprisingly suggest that this tailoring is not necessary and that a single efficient algorithm could achieve best possible guarantees for a wide range of different problems...
متن کاملMixture Models, Robustness, and Sum of Squares Proofs
We use the Sum of Squares method to develop new efficient algorithms for learning wellseparated mixtures of Gaussians and robust mean estimation, both in high dimensions, that substantially improve upon the statistical guarantees achieved by previous efficient algorithms. Our contributions are: • Mixture models with separated means: We study mixtures of k distributions in d dimensions, where th...
متن کاملTensor principal component analysis via sum-of-squares proofs
We study a statistical model for the tensor principal component analysis problem introduced by Montanari and Richard: Given a order-3 tensor T of the form T τ · v⊗3 0 + A, where τ > 0 is a signal-to-noise ratio, v0 is a unit vector, and A is a random noise tensor, the goal is to recover the planted vector v0. For the case that A has iid standard Gaussian entries, we give an efficient algorithm ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Combinatorica
سال: 2020
ISSN: 0209-9683,1439-6912
DOI: 10.1007/s00493-019-4124-y